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Abstract

Models of complex reactions in thermodynamically isolated systems often demonstrate evolu-
tion towards low-dimensional manifolds in the phase space. For this class of models, we suggest
a direct method to construct such manifolds, and thereby to reduce the e�ective dimension of the
problem. The approach realizes the invariance principle of the reduced description, it is based on
iterations rather than on a small parameter expansion, it leads to tractable linear problems, and
is consistent with thermodynamic requirements. The approach is tested with a model of catalytic
reaction. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The goal of nonequilibrium statistical physics is the understanding of how a system
with many degrees of freedom acquires a description with a few degrees of freedom.
This should lead to reliable methods of extracting the macroscopic description from
a detailed microscopic description.
Meanwhile, this general problem is still far from the �nal solution, it is reasonable to

study simpli�ed models, where, on the one hand, a detailed description is accessible to
numerics, on the other hand, analytical methods designed to the solution of problems
in real systems can be tested.

∗ Corresponding author. Fax: +41-1-632-10-76.
E-mail address: ikarlin@ifp.mat.ethz.ch (I.V. Karlin)

0378-4371/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(99)00402 -1



362 A.N. Gorban et al. / Physica A 275 (2000) 361–379

In this paper we address a well-known class of �nite-dimensional systems known
from the theory of reaction kinetics. These are equations governing the relaxation
in perfectly stirred isolated chemically active mixtures. Dissipative properties of such
systems are characterized with a global convex Lyapunov function G which implements
the second law of thermodynamics: as the time t tends to in�nity, the system reaches
the unique equilibrium state while in the course of the transition the Lyapunov function
decreases monotonically.
While the limiting behavior of the dissipative systems just described is certainly very

simple, there are still interesting questions to be asked about. One of these questions
is closely related to the above general problem of nonequilibrium statistical physics.
Indeed, evidence of numerical integration of such systems often demonstrates that
the relaxation has a certain geometrical structure in the phase space. Namely, typical
individual trajectories tend to manifolds of lower dimension, and further proceed to
the equilibrium essentially along these manifolds. Thus, such systems demonstrate a
dimensional reduction, and therefore establish a more macroscopic description after
some time since the beginning of the relaxation.
In this paper, we develop a general method of constructing the reduced description

for dissipative systems of reaction kinetics. Our approach is based on the method of
invariant manifold which has been suggested in Ref. [1]. Its realization for a generic
dissipative systems has been discussed in paper [2]. This method has been applied to
a set of speci�c problems of classical kinetic theory based on the Boltzmann equa-
tion [2–5]. The goal of the present study is twofold. The �rst goal is to verify the
method of invariant manifold on a representative class of nonlinear dissipative systems.
The second goal concerns a more practical issue, namely, the problem of an e�ective
description of complex reactions. For example, the reaction O2 + 2H2 = 2H2O is com-
plex: Besides O2; H2 and H2O, intermediate products should be taken into account
[such as O; H; OH; O2H; O2H2, etc.], and the detailed mechanism of the reaction
includes 30 elementary steps, or even more [6,7]. Though the systems we address in
this paper are �nite dimensional, they may be su�ciently large, and are able to create
di�culties for numerical studies. Therefore, methods to reduce the original detailed
description are needed to make the analysis more tractable.
There are two intuitive ideas behind our approach, and we shall now discuss them in-

formally. Objects to be considered below are manifolds (hypersurfaces) 
 in the phase
space of the reaction kinetic systems (the phase space is usually a convex polyhedron
in a �nite-dimensional real space). The ‘ideal’ picture of the reduced description we
have in mind is as follows: A typical phase trajectory c(t), where t is the time, and
c is an element of the phase space, consists of two pronounced segments. The �rst
segment connects the beginning of the trajectory c(0) with a certain point c(t1) on
the manifold 
. The second segment belongs to 
, and connects the point c(t1) with
the equilibrium ceq=c(∞); ceq ∈ 
. Thus, the manifolds appearing in our ideal picture
are ‘patterns’ formed by the segments of individual trajectories.
There are two important features behind this ideal picture. The �rst feature is the

invariance of the manifold 
: Once the individual trajectory has reached 
, it does
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not leave 
 anymore. The second feature is the projecting: The phase points outside

 will be projected onto 
. Furthermore, the dissipativity of the system provides an
additional information about this ideal picture: Regardless of what happens on the
manifold 
, the function G was decreasing along each individual trajectory before it
reached 
.
This ideal picture of the decomposition of motions is certainly too exaggerated, but

it is a useful guide to extract the reduced description. The main advantage is that it is
completely geometrical, allows for a direct and fairly simple formalization, and makes
it possible to apply rapidly convergent iteration methods of solution.
The paper is organized as follows. In the Section 2, we review the reaction kinetics,

and introduce the method of invariant manifold in the way appropriate to this class of
nonequilibrium systems. In the Sections 3 and 4 we give some details on the two rela-
tively independent parts of the method, the thermodynamic projector, and the iterations
for solving the invariance equation. We also introduce a general symmetric lineariza-
tion procedure for the invariance equation, and discuss its relevance to the picture of
decomposition of motions. In the Section 5, these two procedures are combined into
an unique algorithm. In the Section 6, we demonstrate an example of computations for
a model catalytic reaction. Finally, results are discussed in the Section 7.

2. Manifolds of reduced description

2.1. Outline of the dissipative reaction kinetics

We start with a review of the reaction kinetics (for details see e.g. Refs. [6,7]). Let
us consider an isolated system with n chemical species A1; : : : ; An, participating in a
complex reaction. The complex reaction is represented by the following stoichiometric
mechanism:

�s1A1 + · · ·+ �snAn 
 �s1A1 + · · ·+ �snAn ; (1)

where the index s= 1; : : : ; r enumerates the reaction steps, and where integers �si and
�si are stoichiometric coe�cients. For each reaction step s, we introduce n-component
vectors �s and �s with components �si and �si. Notation 
s stands for the vector with
integer components 
si = �si − �si (the stoichiometric vector). We adopt an abbreviated
notation for the standard scalar product of the n-component vectors:

〈x; y〉=
n∑

i=1

xiyi :

The system is described by n-component concentration vector c, where the component
ci¿0 represents the concentration of the specie Ai. Conservation laws impose linear
constraints on admissible vectors c:

〈bi ; c〉= Bi; i = 1; : : : ; l ; (2)
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where bi are �xed and linearly independent vectors, and Bi are given scalars. Let us
denote as B the set of vectors which satisfy the conservation laws (2):

B = {c|〈b1; c〉= B1; : : : ; 〈bl; c〉= Bl} :
The phase space V of the system is the intersection of the set of n-dimensional vectors
with nonnegative components, with the set B, and dimV = d = n − l. In the sequel,
we term a vector c ∈ V the state of the system. In addition, we assume that each of
the conservation laws is supported by each elementary reaction step, that is

〈
s; bi〉= 0 (3)

for each pair of vectors 
s and bi.
Reaction kinetic equations describe variations of the states in time. Given the stoi-

chiometric mechanism (1), the reaction kinetic equations reads

ċ = J(c); J(c) =
r∑

s=1


sWs(c) ; (4)

where dot denotes the time derivative, and Ws is the reaction rate function of the step s.
In particular, the mass action law suggests the polynomial form of the reaction rates:

Ws = k+s

n∏

i=1

c�ii − k−s
n∏

i=1

c�ii ; (5)

where k+s and k−s are the constants of the direct and of the inverse reactions rates of
the sth reaction step. The phase space V is positive-invariant of the system (4): if
c(0) ∈ V , then c(t) ∈ V for all the times t ¿ 0.
In the sequel, we assume that the kinetic equation (4) describes an evolution towards

the unique equilibrium state ceq in the interior of the phase space V . Furthermore, we
assume that there exists a strictly convex function G(c) which decreases monotonically
in time due to Eq. (4):

Ġ = 〈∇G(c); J(c)〉60 : (6)

Here ∇G is the vector of partial derivatives @G=@ci, and the convexity assumes that
the n× n matrices

Hc = ‖@2G(c)=@ci@cj‖ (7)

are positive de�nite for all c ∈ V . In addition, we assume that matrices (7) are
invertible if c is taken in the interior of the phase space.
The function G is the Lyapunov function of the system (4), and ceq is the point

of global minimum of the function G in the phase space V . Otherwise stated, the
manifold of equilibrium states ceq(B1; : : : ; Bl) is the solution to the variational problem,

G → min for〈bi ; c〉= Bi; i = 1; : : : ; l : (8)

For each �xed value of the conserved quantities Bi, the solution is unique. In many
cases, however, it is convenient to consider the whole equilibrium manifold, keeping
the conserved quantities as parameters.
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For example, for perfect systems in a constant volume under a constant temperature,
the Lyapunov function G reads

G =
n∑

i=1

ci[ln(ci=c
eq
i )− 1] : (9)

Finally, we recall an important generalization of the mass action law (5), known as
the Marcelin–De Donder kinetic function [8–10]. Within this approach, the functions
Ws are constructed as follows: For a given strictly convex function G, and for a given
stoichiometric mechanism (1), we de�ne the gain (+) and the loss (−) rates of the
sth step,

W+
s = ’+s exp[〈∇G; �s〉] ;

W−
s = ’−

s exp[〈∇G; �s〉] ; (10)

where ’±
s ¿ 0 are kinetic factors. The Marcelin–De Donder kinetic function reads:

Ws =W+
s −W−

s , and the right hand-side of the kinetic equation (4) becomes

J =
r∑

s=1


s{’+s exp[〈∇G; �s〉]− ’−
s exp[〈∇G; �s〉]} : (11)

For the Marcelin–De Donder reaction rate (10), the dissipation inequality (6) reads

Ġ =
r∑

s=1

[〈∇G; �s〉 − 〈∇G; �s〉]{’+s exp[〈∇G; �s〉]− ’−
s exp[〈∇G; �s〉]}60 :

(12)

The kinetic factors ’±
s should satisfy certain conditions in order to make valid the

dissipation inequality (12). A well-known su�cient condition is the detail balance:

’+s = ’
−
s ; (13)

other su�cient conditions are discussed in detail elsewhere [6,7,11]. For the function
G of the form (9), the Marcelin–De Donder equation casts into the more familiar mass
action law form (5). In the sequel we adopt the Marcelin–De Donder formulation of
the dissipative reaction kinetics.

2.2. Outline of the reduced description

In many cases, dynamics of the d-dimensional system (4) leads to a manifold of a
lower dimension. Intuitively, a typical phase trajectory behaves as follows: Given the
initial state c(0) at t = 0, and after some period of time, the trajectory comes close
to some low-dimensional manifold 
, and after that proceeds towards the equilibrium
essentially along this manifold. The goal is to construct this manifold.
The starting point of our approach is based on a formulation of the two main

requirements:



366 A.N. Gorban et al. / Physica A 275 (2000) 361–379

(i) Dynamic invariance: The manifold 
 should be invariant under the dynamics of
the originating system (4): If c(0) ∈ 
, then c(t) ∈ 
 for each t ¿ 0.
(ii) Thermodynamic consistency of the reduced dynamics: Let some (not obliga-

tory invariant) manifold 
 is considered as a manifold of reduced description. We
should de�ne a set of linear operators, Pc, labeled by the states c ∈ 
, which project
the vectors J(c); c ∈ 
 onto the tangent bundle of the manifold 
, thereby generat-
ing the induced vector �eld, PcJ(c); c ∈ 
. This induced vector �eld on the tangent
bundle of the manifold 
 is identi�ed with the reduced dynamics along the manifold

. The thermodynamicity requirement for this induced vector �eld reads

〈∇G(c);PcJ(c)〉60 for each c ∈ 
: (14)

In order to meet these requirements, the method of invariant manifold suggests two
complementary procedures:
(i) To treat the condition of dynamic invariance as an equation, and to solve it

iteratively by a Newton method. This procedure is geometric in its nature, and it does
not use the time dependence and small parameters.
(ii) Given an approximate manifold of reduced description, to construct the projector

satisfying condition (14) in a way which does not depend on the vector �eld J .
We shall now outline both these procedures starting with the second. The solution
consists, in the �rst place, in formulating the thermodynamic condition which should
be met by the projectors Pc: For each c ∈ 
, let us consider the linear functional

M∗
c (x) = 〈∇G(c); x〉 : (15)

Then the thermodynamic condition for the projectors reads

kerPc ⊆ kerM∗
c for each c ∈ 
 : (16)

Here kerPc is the null space of the projector, and kerM∗
c is the hyperplane orthogonal

to the vector M∗
c . It has been shown in Ref. [2] that condition (16) is the necessary

and su�cient condition to establish the thermodynamic induce vector �eld on the given
manifold 
 for all possible dissipative vector �elds J simultaneously.
Let us now turn to the requirement of invariance. By a de�nition, the manifold 


is invariant with respect to the vector �eld J if and only if the following equality is
true:

[1− P]J(c) = 0 for each c ∈ 
 : (17)

In this expression P is an arbitrary projector on the tangent bundle of the manifold 
.
It has been suggested to consider condition (17) as an equation to be solved iteratively
starting with some appropriate initial manifold.
Iterations for the invariance equation (17) are considered in the Section 4. The next

section presents construction of the thermodynamic projector using a speci�c parame-
terization of manifolds.
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3. Thermodynamic projector

3.1. Thermodynamic parameterization

In this section, 
 denotes a generic p-dimensional manifold. First, it should be
mentioned that any parameterization of 
 generates a certain projector, and thereby a
certain reduced dynamics [2]. Indeed, let us consider a set of m independent functionals
M (c) = {M1(c); : : : ; Mp(c)}, and let us assume that they form a coordinate system on

 in such a way that 
 = c(M), where c(M) is a vector function of the parameters
M1; : : : ; Mp. Then the projector associated with this parameterization reads

Pc(M)x=
p∑

i; j=1

@c(M)
@Mi

N−1
ij (M)〈∇Mj|c(M); x〉 ; (18)

where N−1
ij is the inverse to the p× p matrix:

N (M) = ‖〈∇Mi; @c=@Mj〉‖ : (19)

This somewhat involved notation is intended to stress that projector (18) is dictated
by the choice of the parameterization. Subsequently, the induced vector �eld of the
reduced dynamics is found by applying projectors (18) on the vectors J [c(M)], thereby
inducing the reduced dynamics in terms of the parameters M as follows:

Ṁ i =
p∑

j=1

N−1
ij (M)〈∇Mj|c(M); J [c(M)]〉 : (20)

Depending on the choice of the parameterization, dynamic equations (20) are (or
are not) consistent with the thermodynamic requirement (14). The thermodynamic
parameterization makes use of condition (16) in order to establish the thermodynamic
projector. Specializing to case (18), let us consider the linear functionals,

DMi|c(M)(x) = 〈∇Mi|c(M); x〉 : (21)

Then condition (16) takes the form:
p⋂

i=1

kerDMi|c(M)⊆ kerM∗
c(M) ; (22)

that is, the intersection of null spaces of the functionals (21) should belong to the null
space of the di�erential of the Lyapunov function G, in each point of the manifold 
.
In practice, in order to construct the thermodynamic parameterization, we take the

following set of functionals in each point c of the manifold 
:

M1(x) =M∗
c (x); c ∈ 
 ; (23a)

Mi(x) = 〈mi ; x〉; i = 2; : : : ; p : (23b)

It is required that vectors ∇G(c);m2; : : : ;mp are linearly independent in each state
c ∈ 
. Inclusion of functionals (15) as a part of system (23) implies the thermodynamic
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condition (22). Also, any linear combination of the parameter set (23) will meet the
thermodynamicity requirement.
It is important to notice here that the thermodynamic condition is satis�ed whatso-

ever the functionals M2; : : : ; Mp are. This is very convenient for it gives an opportunity
to take into account the conserved quantities correctly. The manifolds we are going
to deal with should be consistent with the conservation laws (2). While the explicit
characterization of the phase space V is a problem on its own, in practice, it is cus-
tomary to work in the n-dimensional space while keeping constraints (2) explicitly on
each step of the construction. For this technical reason, it is convinient to consider
manifolds of the dimension p¿l, where l is the number of conservation laws, in the
n-dimensional space rather than in the phase space V . The thermodynamic parameter-
ization is then concordant also with the conservation laws if l of the linear functionals
(23b) are identi�ed with the conservation laws. In the sequel, only projectors consistent
with conservation laws are considered.
Very frequently, the manifold 
 is represented as a p-parametric family c(a1; : : : ; ap),

where ai are coordinates on the manifold. The thermodynamic re-parameterization
in terms of variables (23) suggests a representation of the coordinates ai in terms
of M∗

c ; M2; : : : ; Mp (23). While the explicit construction of these functions may be a
formidable task, we notice that the construction of the thermodynamic projector of
the form (18) and of the dynamic equations (20) is relatively easy because only the
derivatives @c=@Mi enter these expressions. This point was discussed in a detail in
Refs. [1,2]. Here refer to an example considered below [Section 6, Eq. (51)].

3.2. Decomposition of motions: thermodynamics

Finally, let us discuss how the thermodynamic projector is related to the decompo-
sition of motions. Assuming that the decomposition of motions near the manifold 

is true indeed, let us consider states which were initially close enough to the manifold

. Even without knowing the details about the evolution of the states towards 
, we
know that the Lyapunov function G was decreasing in the course of this evolution.
Let us consider a set of states Uc which contains all those vectors c′ that have arrived
(in other words, have been projected) into the point c ∈ 
. Then we observe that the
state c furnishes the minimum of the function G on the set Uc. If a state c′ ∈ Uc, and
if it deviates small enough from the state c so that the linear approximation is valid,
then c′ belongs to the a�ne hyperplane

�c = c + kerM∗
c ; c ∈ 
 : (24)

This hyperplane actually participates in condition (16). The consideration was entiteled
‘thermodynamic’ [1] because it describes the states c ∈ 
 as points of minimum of
the function G over the corresponding hyperplanes (24).
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4. Corrections

4.1. Preliminary discussion

The thermodynamic projector is needed to induce the dynamics on a given manifold
in such a way that the dissipation inequality (14) holds. Coming back to the issue
of constructing corrections, we should stress that the projector participating in the
invariance condition (17) is arbitrary. It is convinient to make use of this point: When
Eq. (17) is solved iteratively, the projector may be kept nonthermodynamic unless the
induced dynamics is explicitly needed.
Let us assume that we have chosen the initial manifold, 
0, together with the as-

sociated projector P0, as the �rst approximation to the desired manifold of reduced
description. Though the choice of the initial approximation 
0 depends on the spe-
ci�c problem, it is often reasonable to consider quasi-equilibrium or quasi-stationary
approximations [they will be discussed below in the Sections 5 and 6]. In most cases,
the manifold 
0 is not an invariant manifold. This means that 
0 does not satisfy the
invariance condition (17):

�0 = [1− P0]J(c0) 6= 0 for some c0 ∈ 
0 : (25)

Therefore, we seek a correction c1 = c0 + �c. Substituting P=P0 and c= c0 + �c into
the invariance equation (17), and after the linearization in �c, we derive the following
linear equation:

[1− P0][J(c0) + Lc0�c] = 0 ; (26)

where Lc0 is the matrix of �rst derivatives of the vector function J , computed in the
state c0 ∈ 
0. The system of linear algebraic equations (26) should be supplied with
the additional condition.

P0�c = 0 : (27)

In order to illustrate the nature of the Eq. (26), let us consider the case of
linear manifolds for linear systems. Let a linear evolution equation is given in the
�nite-dimensional real space: ċ = Lc, where L is negatively de�nite symmetric ma-
trix with a simple spectrum. Let us further assume the quadratic Lyapunov function,
G(c)=〈c; c〉. The manifolds we consider are lines, l(a)=ae, where e is the unit vector,
and a is a scalar. The invariance equation for such manifolds reads: e〈e;Le〉−Le=0,
and is simply a form of the eigenvalue problem for the operator L. Solutions to the
latter equation are eigenvectors ei, corresponding to eigenvalues �i.
Assume that we have chosen a line, l0 = ae0, de�ned by the unit vector e0, and that

e0 is not an eigenvector of L. We seek another line, l1 = ae1, where e1 is another unit
vector, e1=y1=‖y1‖; y1=e0+�y. The additional condition (27) now reads: 〈�y; e0〉=0.
Then the Eq. (26) becomes [1 − e0〈e0; ·〉]L[e0 + �y] = 0. Subject to the additional
condition, the unique solution is as follows: e0 + �y = 〈e0;L−1e0〉−1L−1e0. Rewriting
the latter expression in the eigenbasis of L, we have: e0 + �y ˙

∑
i �

−1
i ei〈ei ; e0〉.
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The leading term in this sum corresponds to the eigenvalue with the minimal absolute
value. The example indicates that the method of linearization (26) seeks the direction
of the slowest relaxation. For this reason, method (26) can be recognized as the basis
of an iterative method for constructing the manifolds of slow motions.
For the nonlinear systems, the matrix Lc0 in the Eq. (26) depends nontrivially on

c0. In this case system (26) requires a further speci�cation which will be done now.

4.2. Symmetric linearization

The invariance condition (17) supports a lot of invariant manifolds, and not all of
them are relevant to the reduced description (for example, any individual trajectory is
itself an invariant manifold). This should be carefully taken into account when deriving
a relevant equation for the correction in the states of the initial manifold 
0 which are
located far from equilibrium. This point concerns the procedure of the linearization of
the vector �eld J , appearing in Eq. (26). We shall return to the explicit form of the
Marcelin–De Donder kinetic function (10). Let c is an arbitrary �xed element of the
phase space. The linearization of the vector function J (11) about c may be written
J(c + �c) ≈ J(c) + Lc�c where the linear operator Lc acts as follows:

Lcx=
r∑

s=1


s[W
+
s (c)〈�s;Hcx〉 −W−

s (c)〈�s;Hcx〉] : (28)

Here Hc is the matrix of second derivatives of the function G in the state c [see
Eq. (7)]. The matrix Lc in the Eq. (28) can be decomposed as follows:

Lc = L′
c + L

′′
c : (29)

Matrices L′
c and L

′′
c act as follows:

L′
cx=−1

2

r∑

s=1

[W+
s (c) +W

−
s (c)]
s〈
s;Hcx〉 ; (30a)

L′′
c x=

1
2

r∑

s=1

[W+
s (c)−W−

s (c)]
s〈�s + �s;Hcx〉 : (30b)

In order to highlight some features of this decomposition, let us introduce another
scalar product, 〈〈x|y〉〉c, generated by the positive-de�nite matrix Hc,

〈〈x|y〉〉c = 〈x;Hcy〉 : (31)

The following properties of the matrix L′
c are veri�ed immediately:

(i) The matrix L′
c is symmetric in the scalar product (31):

〈〈x|L′
c|y〉〉c = 〈〈y|L′

c|x〉〉c : (32a)

(ii) The matrix L′
c is nonpositive de�nite in the scalar product (31):

〈〈x|L′
c|x〉〉c60 : (32b)
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(iii) The null space of the matrix L′
c is the linear envelope of the vectors H

−1
c bi

representing the complete system of conservation laws:

kerL′
c = Lin{H−1

c bi ; i = 1; : : : ; l} (32c)

(iv) If c = ceq, then W+
s (c

eq) =W−
s (c

eq), and

L′
ceq = Lceq : (32d)

Thus, the decomposition Eq. (29) splits the matrix Lc in two parts: one part, Eq.
(30a) is symmetric and nonpositive de�nite, while the other part, Eq. (30b), vanishes in
the equilibrium. The decomposition Eq. (29) explicitly takes into account the Marcelin–
De Donder form of the kinetic function. For other dissipative systems, decomposition
(29) is possible as soon as the relevant kinetic operator is written in a gain–loss form
[for instance, this is straightforward for the Boltzmann collision operator].
In the sequel, we shall make use of the properties of the operator L′

c (30a) for
constructing the dynamic correction by extending the picture of the decomposition of
motions.

4.3. Decomposition of motions: kinetics

The assumption about the existence of the decomposition of motions near the mani-
fold of reduced description 
 has led to the thermodynamic speci�cations of the states
c ∈ 
. This was accomplished in the Section 3:2, where the thermodynamic projector
was backed by an appropriate variational formulation, and this has helped us to estab-
lish the induced dynamics consistent with the dissipation property. Another important
feature of the decomposition of motions is that the states c ∈ 
 can be speci�ed
kinetically. Indeed, let us ‘freeze’ again the dynamics along the manifold 
, and
lets us consider the process of relaxation towards a state c ∈ 
. Dynamics towards the
state c ∈ 
 is described with the linear operator Lc. That is, for the sates c+�c ∈ �c0 ,
where �c0 is the hyperplane (24), we have a relaxation equation, �̇c = Lc�c. This
relaxation equation has the quadratic Lyapunov function, �G = 〈〈�c|�c〉〉c, that is,
〈〈�c|Lc|�c〉〉c60.
Let us consider now the manifold 
0 which is not the invariant manifold of the

reduced description but, by our assumption, is located close to it. Consider a state
c0 ∈ 
0, and the states c0 + �c close to it. Further, let us consider an equation

�̇c = L′
c0�c : (33)

Due to the properties of the operator L′
c0 (30a), this equation can be regarded as a

model of the assumed true relaxation equation near the true manifold of the reduced
description. For this reason, we shall use the symmetric operator L′

c (30a) instead of
the linear operator Lc when constructing the corrections. It should be stressed here
that the symmetric linearization (30a) is by no means unique. A di�erent way of
deriving the symmetric linearization will be discussed in the Section 7.
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4.4. Symmetric iteration

Let the manifold 
0 and the corresponding projector P0 are the initial approximation
to the invariant manifold of the reduced description. The dynamic correction c1=c0+�c
is found upon solving the following system of linear algebraic equations:

[1− P0][J(c0) + L′
c0�c] = 0 ; (34a)

P0�c = 0 : (34b)

Here L′
c0 is matrix (30a) taken in the states on the manifold 
0. An important technical

point here is that the linear system (34a) always has the unique solution for any choice
of the manifold 
. This point is crucial since it guarantees the opportunity of carrying
out the correction process for arbitrary number of steps.

5. The method of invariant manifold

We shall now combine together the two procedures discussed above. The resulting
method of invariant manifold intends to seek iteratively the reduced description, starting
with an initial approximation.
(i) Initialization: In order to start the procedure, it is required to choose the initial

manifold 
0, and to derive corresponding thermodynamic projector P0. In the majority
of cases, initial manifolds are available in two di�erent ways. The �rst case are the
quasi-equilibrium manifolds. Let us consider concentrations of the k species A1; : : : ; Ak
for relevant macroscopic variables (for example, concentrations of all stable products
of the complex reaction). The macroscopic parameters are Mi = ci = 〈mi ; c〉, where
mi is the unit vector corresponding to the specie Ai. The quasi-equilibrium manifold,
c0(M1; : : : ; Mk ; B1; : : : ; Bl), compatible with the conservation laws, is the solution to the
variational problem:

G → min; 〈mi ; c〉= ci; i = 1; : : : ; k ;

〈bj; c〉= Bj; j = 1; : : : ; l : (35)

In the case of quasi-equilibrium approximation, the corresponding thermodynamic pro-
jector can be written most straightforwardly in terms of the variables Mi:

P0x=
k∑

i=1

@c0
@ci

〈mi ; x〉+
l∑

i=1

@c0
@Bi

〈bi ; x〉 : (36)

For quasi-equilibrium manifolds, a re-parameterization with set (23) is not necessary [2].
The second source of initial approximations are quasi-stationary manifolds. They

are derived by setting to zero a subset of reaction rates to arrive at the equations,
Ws(c)=0; s=s1; : : : ; sk . Solution to these equations gives the quasi-stationary manifold,
parameterized with the concentrations cs1 ; : : : ; csk . Unlike the quasi-equilibrium case, the
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quasi-stationary manifolds must be re-parameterized in order to construct the thermo-
dynamic projector. In the sequel we shall consider an example of both the quasi-
equilibrium and the quasi-stationary initial manifolds.
(ii) Corrections: Iterations are organized in accord with the rule: If cm is the mth

approximation to the invariant manifold, then the correction cm+1 = cm + �c is found
from the linear algebraic equations,

[1− Pm](J(cm) + L′
cm�c) = 0 ; (37a)

Pm�c = 0 : (37b)

Here L′
cm is the symmetric matrix (30a) evaluated at the mth approximation. The

non-thermodynamic projector Pm is taken as follows:

Pmx=
k∑

i=1

@cm
@ci

〈mi ; x〉+
l∑

i=1

@cm
@Bi

〈bi ; x〉 : (38)

(iii) Dynamics: Dynamics on the mth manifold is obtained with the thermodynamic
re-parameterization.
In the next section we shall test how this all works.

6. Example: The two-step catalytic reaction

Here we consider a two-step four-component reaction with one catalyst A2:

A1 + A2 
 A3 
 A2 + A4 : (39)

We assume the Lyapunov function of the form (9), G =
∑4

i=1 ci[ln(ci=c
eq
i ) − 1]. The

kinetic equation for the four-component vector of concentrations, c=(c1; c2; c3; c4), has
the form

ċ = 
1W1 + 
2W2 : (40)

Here 
1;2 are stoichiometric vectors,


1 = (−1;−1; 1; 0); 
2 = (0; 1;−1; 1) (41)

while functions W1;2 are reaction rates:

W1 = k+1 c1c2 − k−1 c3 ;
W2 = k+2 c3 − k−2 c2c4 : (42)

Here k±1;2 are reaction rate constants. The system under consideration has two conser-
vation laws,

c1 + c3 + c4 = B1 ;

c2 + c3 = B2 ; (43)
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or 〈b1;2; c〉=B1;2, where b1 = (1; 0; 1; 1) and b2 = (0; 1; 1; 0). The nonlinear system (40)
is e�ectively two-dimensional, and we consider a one-dimensional reduced description.
In the �rst test, we have chosen the concentration of the specie A1 as the variable of

reduced description: M =c1, and c1 = 〈m; c〉, where m=(1; 0; 0; 0). The initial manifold
c0(M) was taken as the quasi-equilibrium approximation, i.e. the vector function c0 is
the solution to the problem:

G → min for 〈m; c〉= c1; 〈b1; c〉= B1; 〈b2; c〉= B2 : (44)

The solution to problem (44) reads

c01 = c1 ;

c02 = B2 − �(c1) ;
c03 = �(c1) ;

c04 = B1 − c1 − �(c1) ;
�(M) = A(c1)−

√
A2(c1)− B2(B1 − c1) ;

A(c1) =
B2(B1 − ceq1 ) + ceq3 (ceq1 + ceq3 − c1)

2ceq3
: (45)

Notice that this manifold is also the quasi-stationary manifold of the second reaction
step, i.e. W2(c0) = 0. The thermodynamic projector associated with the manifold (45)
reads:

P0x=
@c0
@c1

〈m; x〉+ @c0
@B1

〈b1; x〉+ @c0
@B2

〈b2; x〉 : (46)

Computing �0 = [1 − P0]J(c0) we �nd that inequality (25) takes place, and thus the
manifold c0 is not invariant. The �rst correction, c1 = c0 + �c, is found from the linear
algebraic system (34a)

(1− P0)L′
0�c =−[1− P0]J(c0) ; (47)

�c1 = 0 ;

�c1 + �c3 + �c4 = 0 ;

�c3 + �c2 = 0 ; (48)

where the symmetric 4 × 4 matrix L′
0 has the form (we write 0 instead of c0 in the

subscript in order to simplify notations):

L′0; kl =−
1k W
+
1 (c0) +W

−
1 (c0)

2

1l
c0l

− 
2k W
+
2 (c0) +W

−
2 (c0)

2

2l
c0l
: (49)

The explicit solution c1(c1; B1; B2) to the linear system (47) is easily found, and we do
not reproduce it here. The process was iterated. On the k + 1 iteration, the following
projector Pk was used:

Pkx=
@ck
@c1

〈m; x〉+ @ck
@B1

〈b1; x〉+ @ck
@B2

〈b2; x〉 : (50)



A.N. Gorban et al. / Physica A 275 (2000) 361–379 375

Notice that projector Pk (50) is the thermodynamic projector only if k=0. As we have
already mentioned it above, in the process of �nding the corrections to the manifold,
the non-thermodynamic projectors are allowed. The linear equation at the k+1 iteration
is thus obtained by replacing c0; P0, and L′

0 with ck ; Pk , and L
′
k in all the entries of

Eqs. (47) and (49).
Once the manifold ck was obtained on the kth iteration, we derived the corresponding

dynamics by introducing the thermodynamic parameterization (and the corresponding
thermodynamic projector) with the help of function (23a). The resulting dynamic equa-
tion for the variable c1 in the kth approximation has the form

〈∇G|ck ; @ck =@c1〉ċ1 = 〈∇G|ck ; J(ck)〉 : (51)

Here [∇G|ck ]i = ln[cki=ceqi ].
Analytic results were compared with the results of the numerical integration. The

following set of parameters was used:

k+1 = 1:0; k−1 = 0:5; k+2 = 0:4; k−2 = 1:0 ;

ceq1 = 0:5; ceq2 = 0:1; ceq3 = 0:1 ; ceq4 = 0:4 ;

B1 = 1:0; B2 = 0:2 :

Direct numerical integration of the system has demonstrated that the manifold c3 = c
eq
3

in the plane (c1; c3) attracts all individual trajectories. Thus, the reduced description in
this example should extract this manifold.
Fig. 1 demonstrates the quasi-equilibrium manifold (45) and �rst two corrections

found analytically. It is apparent that while the initial quasi-equilibrium approximation
is in a poor agreement with the reduced description, the corrections rapidly improve
the situation. This con�rms our expectation of an advantage of using iteration methods
in comparison to methods based on a small parameter expansions.
In the second test, we have used a di�erent initial approximate reduced description

for the same system. The initial manifold was chosen as the quasi-stationary manifold
of the �rst reaction, i.e. it was found from an equation W1(c) = 0:

c01 = c1 ;

c02 =
B2k−1

k−1 + k
+
1 c1

;

c03 =
k+1 B2c1
k−1 + k

+
1 c1

;

c04 = B1 − c1 − k+1 B2c1
k−1 + k

+
1 c1

: (52)

The quasi-stationary manifold (52) is parameterized by the variable c1, and we
have used again the same projectors (46) and (50) in the course of �nding corrections
to the manifold (52). It should be stressed that projector (46) is not thermodynamic
for the quasi-stationary manifold (52) because the latter is not the quasi-equilibrium
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Fig. 1. Images of the initial quasi-equilibrium manifold (bold line) (44) and the �rst two corrections (solid
normal lines) in the phase plane [c1; c3] for two-step catalytic reaction (40). Dashed lines are individual
trajectories.

Fig. 2. Images of the initial quasi-stationary manifold (bold line) and of the �rst two corrections (solid
normal lines) for the same system as in the Fig. 1.
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Fig. 3. Time evolution of the concentration of the specie c1 calculated using the Eq. (51). Bold line: The
initial quasi-equilibrium approximation (44). Solid line: The �rst correction. Dashed line: The numerical
solution of the Eq. (40) corresponding to the trajectory of the slowest relaxation.

manifold. Rather, dynamics on the manifold (52) should be derived within its thermo-
dynamic re-parameterization, that is, from the Eq. (51) for k = 0.
In Fig. 2 we demonstrate the quasi-stationary manifold (52), together with the two

�rst corrections. Same as in the �rst test, the convergency is apparent. It is important to
notice here the insensitivity of the corrections to the choice of the initial approximation:
While both the initial approximations (45) and (52) are poor, and di�er considerably
from each other, the invariant manifold is approximated fairly well after two iterations
starting from either approximation.
In Fig. 3 we compare the time evolution of the concentration c1 computed in three

di�erent ways: Integrating numerically the Eq. (51) for the quasi-equilibrium manifold
(45), and for the second correction, and integrating the kinetic equation (40) with the
initial condition c3(0) = c

eq
3 ; c1(0) =B2 − ceq3 which corresponds to the ‘true’ invariant

manifold. The comparison is fairly good.

7. Discussion

In this paper, we have considered applications of the method of invariant manifold
to an important problem of dissipative chemical kinetics: The construction of reduced
description for spatially uniform reacting systems. The method of invariant manifold is
extended with the symmetric linearization procedure. The technical advantage of this
linearization is a simpli�cation of the correction step. We have also given a plausible
argument of its relevancy to the decomposition of motions. The method was veri�ed
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with an example of a nonlinear reaction mechanism, and, in particular, insensitivity to
the choice of the initial approximation has been demonstrated.
The following clari�cation is in order: The use of projection operators within the

present framework should not be confused with the family of methods of nonequilib-
rium statistical mechanics known under the common title of projection operator for-
malism [12]. The fundamental di�erence is that in the projection operator formalism
one considers individual trajectories, and starts with a formal solution of the dynamic
equation which makes it applicable solely to linear equations (basically, to the Liouville
equation, or, in the case of dissipative systems, to linearized kinetic equations such as
the linearized Boltzmann equation). Otherwise stated, in the projection operator formal-
ism, one attempts to construct the �nals of the dynamics by tracing trajectories from
their beginning, while in the method of invariant manifold one attempts to proceed in
an opposite direction by choosing an ansatz for the �nal dynamics and then iteratively
correcting it due to dynamics. In both cases, certain hypothesis are necessary in order
to proceed: In the projection operator formalism, the idea of a rapid decay of memory
is most important, while in the method of invariant manifold the thermodynamic and
kinetic description of the decomposition of motions are essential.
A further comment concerns a generalization of the symmetric linearization procedure

to construction of reduced description in other systems. In a recent series of publications
[13,14], it has been demonstrated that many kinetic systems can be cast in the following
suggestive form:

dx
dt
= L(x)

�E
�x
+M (x)

�S
�x
; (53)

where x is a state variable, L and M are operators acting linearly on the gradient of
the energy E and of the entropy S. Only the second term in the right-hand side of
Eq. (53) is relevant to our discussion, and we recall that the operator M is symmet-
ric and nonnegative de�nite. Here we mention that the Marcelin–De Donder form of
reaction kinetic equation can be recast into a similar expression: For simplicity, let us
assume the detail balance condition (13). Multiplying and dividing each term in the
sum (11) by the a�nity, 〈
s;∇G〉, we have

J =−M∇G; (54a)

where the nonnegative de�nite symmetric matrix M has the following explicit form:

M =
r∑

s=1

|
s〉
’+s {exp[〈∇G; �s〉]− exp[〈∇G; �s〉]}

〈∇G; �s〉 − 〈∇G; �s〉
〈
s| : (54b)

This representation of the Marcelin–De Donder kinetics is relevant to the dissipa-
tive part of the Eq. (53) (moreover, it is directly relevant to a representation of the
Boltzmann collision operator found in Ref. [15]). The form (54a) can be used as an
alternative starting point in order to obtain a symmetric linearization around the state
c0: Evaluating the c-dependent matrix (54b) in the state c0, and using second-order
expansion of the function G around c0, we have

J(c0 + �c) ≈ J(c0) +Mc0 |�c〉〉 : (55)
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If we now consider the relaxation equation, �̇c =Mc0 |�c〉〉, it becomes apparent that
it models the relaxation to the state c0 in the same sense as the relaxation equation
(33). Therefore, the matrix Mc0 could be used in the symmetric linearization procedure
instead of the matrix L′

c0 in the Eq. (34a), and therefore an extension of our formal-
ism is possible to systems of the form (53) where the nonnegative de�nite symmetric
operator M may have no additional Marcelin–De Donder structure. It should be stressed
here that though the symmetric linearization procedure is not unique, the �xed point
of the correction procedure (the invariant manifold) does not depend on which lin-
earization was used, though the corrections may approach the limit along a sequence
of approximations which does depend on the linearization.
Finally, we would like to emphasize that the construction of invariant manifolds is

relevant also to open systems. In that case, the most important question concerns the
construction of initial approximations and derivation of the induced dynamics since
these points are not supported by thermodynamic considerations anymore. An answer
to these questions is planned for a subsequent publication.
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